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Abstract

In this work we present some preliminary results on the analysis of data collected by
BreastScreen Norway to estimate the natural history of the disease. Learning about the
disease occurrence and evolution is crucial to identify the optimal screening schedule, with
respect to the age range of the invited women and the lag between successive examinations.
The model is a multi-state semi-Markov model with a cure rate structure, where the main
quantities of interest are the probability of developing the disease, the age at start of asymp-
tomatic detectability of the disease and the sojourn time, i.e. the time interval during which
the disease is screen-detectable but not yet symptomatic.

Keywords: approximate Bayesian computation (ABC), breast cancer, cure rate model, disease
history, multi-state model

1. Introduction

Cancer screening is defined as the examination of asymptomatic subjects in order to detect tumours
before they become evident because of symptoms (1). In the past decades screening programs have
been implemented in many countries, therefore making randomized trials difficult to perform and those
performed difficult to evaluate due to changes in screening techniques and diagnostic tools. As a con-
sequence, researchers can only rely on observational data collected administratively to learn about the
natural history of the disease and to identify the optimal screening policy (in terms of the age range of the
women invited, and lag between consecutive examinations), and risk-based tailoring of their schedules.

In this work, we apply a multi-state semi-Markov model proposed in (2) to the breast cancer screen-
ing data from Norway (BreastScreen Norway). This model aims at reconstructing the latent process of
occurrence and development of breast cancer.

All times are measured from birth of the woman. For those women who do experience the disease,
we assume that after the onset of the disease there is a time interval in which not even a screening
examination is able to detect the presence of the disease (see Figure 1). The two main quantities of
interest are the time to the start of asymptomatic detectability (through screening) of the disease (which
we denote by TA) and the time to the symptomatic detection of the disease (denoted by TS). Between
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time TA and TS the tumour can only be detected through screening (the “sojourn time,” denoted by ∆),
while at time TS the disease becomes evident because of symptoms. In other words we have TS =
TA +∆. Further, we assume that symptomatic detection occurs exactly when the first symptoms appear.

Birth Onset TA

Asymptomatic
Detectability

TS∆

Symptomatic
Detection

Age (years)

Figure 1: A graphical representation of the natural history from onset until detectability of the disease.

While studying the latent evolution of the disease, we are also interested in studying the probability
of insurgence of the disease in a woman’s lifetime. For this purpose, the model presents a cure rate
structure, i.e. only a proportion of women, which we call the “susceptible proportion”, denoted by p with
p ∈ (0, 1) will experience the event of developing breast cancer. Note that these should be considered to
be latent cases and not necessarily observed cases.

Given by the limited follow-up, the lag between screening examinations and the impossibility to
observe TS when the tumour is screen-detected, this problem presents a complex missing data structure,
which makes the observed data likelihood (3) of the model complicated if not intractable.

2. The Norwegian breast cancer screening data

Breast cancer screening in Norway was first introduced in 1995 (and became nationwide in 2005)
and targets women aged 50-69 for biennial mammographic screening. We focus on a cohort of women
born between 1948 and 1952 without any breast cancer diagnoses before entering the screening program
at age 50 (with a small variability due to the invitations rounds). For these women we have information
on their screening invitations, attendance and result for each examination, possible date of breast cancer
diagnosis (DCIS or invasive), type of detection (in-screening or symptomatic), some additional tumour
characteristics, as well as on a number of covariates collected through a questionnaire.

The screening invitations stop at age 69 but the breast cancer diagnoses are updated from the Cancer
Registry until May 2022. Therefore the lentgh of follow-up is between 20 and 24 years. We focus only
on invasive cancers and on three binary covariates, which divide the women in eight groups as shown
in Table 1: having had at least one birth X1 (0=no, 1=yes); level of education X2 (0=low, 1=high); and
family history of breast cancer X3 (0=no, 1=yes). These are indeed the three non-race main risk factors
for breast cancer (among women with no previous history of the disease) (4).

Table 1 also shows the sample size, the proportion of observed detections, the proportion of symp-
tomatic detections and the mean age at asymptomatic/symptomatic detections for each covariate group.

Group (x1, x2, x3) Size % Dx % Symp Dx Mean age Mean age
among all Dx Asymp Dx Symp Dx

1 (0,0,0) 1240 5.2% 27% 63.3 65.6
2 (0,0,1) 351 7.4% 35% 63.1 63.2
3 (0,1,0) 3731 4.9% 39% 62.9 65.3
4 (0,1,1) 1329 9.0% 38% 63.1 64.0
5 (1,0,0) 16241 3.8% 28% 63.8 66.0
6 (1,0,1) 4627 5.7% 36% 64.1 66.2
7 (1,1,0) 39330 4.2% 33% 63.7 65.1
8 (1,1,1) 13252 5.7% 35% 64.0 65.0

Total 80101

Table 1: Observed outcomes in each covariate group. Ages are measured in years. X1= at least one child birth
(0:No, 1:Yes); X2=Education level (0:Low, 1:Medium/High); X3=Family history of breast cancer (0:No, 1:Yes).



3. Model and preliminary results

Recall the three binary covariates described in Section 2.: X1 =“at least one birth,” X2 =“high level
of education,” and X3 =“family history of breast cancer,” all coded as 0 = No and 1 = Yes. The
susceptible proportion is modelled as function of the observed covariates x = (x1, x2, x3) through the
logit link:

p(x) =
ep0+p1x1+p2x2+p3x3

1 + ep0+p1x1+p2x2+p3x3
.

For the subjects who will eventually develop the disease, the disease evolution is described through
the joint distribution of the couple (TA,∆). The model assumes that the mean of TA depends on the
covariates linearly, and that the variance of TA is constant across covariate groups. The distribution of
∆ is defined conditionally on the observed value of TA, and it may depend on the covariates but only
indirectly (see below). The definition of the model for the disease process is as follows:

TA | β0, ..., β3, σ ∼ 100 · Beta(α, β);
∆ | {TA = tA}, λ1, λ2, λ3 ∼ Exp(λ1 · 1(tA ≤ 55) + λ2 · 1(55 < tA ≤ 65) + λ3 · 1(tA > 65)),

where E(TA) = µ(x) = 100 · α
α+β = β0 + β1x1 + β2x2 + β3x3, σ2 = 1002 · αβ

(α+β)2(α+β+1)
.

This model, called “Rescaled beta + piecewise exponential” model, has been introduced in (2), where
it was selected among ten competing models to describe breast cancer natural history. We refer to
this reference for additional details on the model, such as the prior distribution for the 12 parameters
(β0, β1, β2, β3, σ, λ1, λ2, λ3, po, p1, p2, p3).

Approximate posterior distributions for the model parameters are obtained via likelihood-free in-
ference. More specifically, relying on approximate Bayesian computation (ABC) allows us to avoid
deriving the complex observed data likelihood of the model. Details on the metric function employed to
measure the distance between the real and generated data are not shown here, but a complete description,
together with a discussion of the advantages and drawbacks of ABC in this setting, can be found in (2).
The results presented here are based on 200,000 generated datasets.

Figure 2 shows the boxplots of the posterior distributions for the mean of TA, µ(x), and for the
susceptible proportion p(x) across the eight covariate groups. The left panel of Figure 2 highlights that
women with at least one child tend to experience breast cancer later than those without children. From
the right panel, instead, clearly emerges that having a family history of breast cancer is associated with an
increased risk of belonging to the group of the susceptible subjects. Note that the posterior distributions
of the p’s are shifted toward slightly higher values than expected from previous studies (see e.g. (5)). This
is likely due to the difficulties in estimating a weakly identified cure rate model with limited follow-up,
i.e. little data at higher ages.

Given the posterior distributions, one can then compute the predictive distributions for the quantities
of interest, TA and ∆ (see Figure 3). The median predicted values for TA vary between 69.2 (in group 4)
and 72.5 (in group 6). The standard deviation of TA is estimated to be around 7.5 years. The predictive
distributions for ∆ in the three groups defined by the value of TA have medians 2.4, 4.5 and 0.9 years,
respectively. While the first two appear to be in line with what is known by previous studies, the predic-
tive distribution for ∆ in the third group does not seem very reliable. Similarly to what was highlighted
when commenting the posterior distributions for the p’s, this can be probably attributed to the lack of
information about TA for tumours occurring after the age of 65, given that screening examinations stop
at age 69 .

4. Conclusions

We have estimated a parametric model to describe the insurgence and the evolution of breast can-
cer, where the main quantities of interest are the probability of developing the disease (p), the start of
asymptomatic detectability of the disease and the time of symptomatic detection (TA and TS). Given
the estimated latent disease process, it is possible to simulate the effect of different screening schedules,
possibly tailored to the individual risk factors, on the number and kind of diagnoses in the populations.



Figure 2: Approximate posterior distributions of the mean age at asymptomatic detectability µ(x) and of the
susceptible proportion p(x) across covariate groups.

This work might be extended by including in the model a parameter for the sensitivity of the screen-
ing examinations. Indeed, the assumption of a 100% sensitivity, as we made here, corresponds to setting
the probability of false negative results equal to zero, which is not realistic (6). Moreover, additional
covariates, such as breast density, could be included in the model.

Other interesting analyses could be based on different cohorts of women included in the BreastScreen
Norway database, which could confirm the estimated disease process or highlight differences in the
occurrence between different generations.

Also, assuming a stable disease population (in which the rate of births and the distribution of ages at
tumour onset are constant across calendar time (7)), one could analyse a larger cohort of women at once
to exploit the information provided by women at different ages and therefore to obtain a more precise
inference. This would however come with a higher computational cost and a longer time needed to
perform the ABC simulations.

Future developments of this work will also involve the numerical computation of the observed data
likelihood function to perform exact Bayesian inference through MCMC.



Figure 3: Approximate predictive distributions of the age at asymptomatic detectability TA and of the sojourn
time ∆ across covariate groups.
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